Partitioning the Z Part of CSP_Z Speci⁻cations

Adalberto Farias

De ⁻ nition	Explanation	
STOP	A basic process which never communicates neither progress. It denotes a	
	deadlock.	
®P	Denotes the <i>alphabet</i> of a process: the set of all events found in its body.	
initials(P)	Gives the set ce2TDa003.00G0.4w20.05-564.82TD51.51nitiala10w20.05-518 d2(Giv)TD[(A)pr	50TD[(of!J/F5

 S_p is built (or prede⁻ned in cases such as deadlock-freedom) as abstract as possible exhibiting the desired property p. This is exactly implemented in the FDR tool [7], where some basic processes (such as the deadlock-free or divergence-free processes) are used for determining properties of arbitrary processes.

This re-nement checking is also true for

abstraction. This originates a renaming relation R| the interface abstraction | that preserves the names of the channels and maps in nite events to nite ones. Provided that R satis es the minimum cardinalities required by P_{CSP} , the image of R (ran R)

Law 3.2 (*jj*-commutes) Let P and Q be CSP processes. Then, $P_{X} = Q_{X} P_{X}$

}

Law 3.4 (2-step) (?x : A ! P)

(by Lemma 3.5)

^ P^{di}[[R